
I) Using dynamic 
object-orien ted 
features, a 
mainframe 
implementation o f  a 
Smalltalk-like 
execution 
environment 
suppovts a critical 
application and can 
accommodate change. 
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bject-oriented 
principles can resolve long-standing 
problems of software construction and 
evolution. The  Brooklyn Lnion Gas 
Company found t h s  to be true when it re- 
placed its outdated customer information 
system wlth the new Customer-Related 
Information System developed using ob- 
ject-oriented techques. 

Brooklyn Union’s decision to use ob- 
ject orientation in CRIS-IT simplified de- 
velopment, improved communication, 
and motivated personnel. 

Object-oriented concepts focused on 
the model, or simulation, aspects of sys- 
tem building and let us base the system ar- 
chitecture on the essential aspects of the 
underlying problem domain. System de- 
velopers and users could speak the same 
language because the new system mod- 
eled the company’s business environment. 
We could design techca l  and organiza- 
tional artifacts as replaceable components 

~~ ~~~~~~~~ ~~~~~ ~~ 
~~~~~~~~~~~~~ ~~ 

~~~ 
~ ~~~ 

I E E E  S O F T W A R E  07407459/93/0100/0067/503 00 0 IEEE 

CRIS-11’s implementation in a 
Smalltalk-like execution environment 
with object-oriented features lessened 
coupling between components, com- 
pared with other object systems. Though 
it is fully object-oriented, the system ac- 
commodates many traditional, non-ob- 
ject-oriented components such as a rela- 
tional database manager, an on-line 
transaction manager, a batch report writ- 
er, and a user-interface dialogue manager. 
Also, CRIS-IT interfaces to more than 1s 
other applications. Two years of mainte- ~ 

nance and enhancements since its start-up 1 

we can naturally adapt its object model to 
change and to incorporate more applica- 
tions. 

in January 1990 have demonstrated that 

APPLICATION ARCHITECTURE 

System architectures are often de- 
scribed in terms of today’s artifacts for re- 
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alizing the architecture. In contrast, the 
CRIS-II architecture is structured in three 
layers that are derived from essential as- 
pects of the underlying problem domain. 
The interface, process, and business-ob- 
ject layers address, respectively, the 
“when,” “what,” and L‘how” in the gas util- 
ity environment. 

The architecture model uses layers to 
package the system. The layers of the ar- 
chitecture isolate functional concerns 
from the user interface and from physical 
representations of data. Separation of in- 
terface concerns from other layers in the 
archtecture allows business functions to 
be used from multiple user interfaces. 

The model avoids brittleness - it can 
adapt to evolving company policies and 
practices over time and still retain its con- 
ceptual structure. 

The use of object-oriented techniques 
in all layers of the archi- 
tecture Drovides a con- 
vincing and sustainable 
model for representing 
the system. The use of 
objects within the frame- 
work of the architecture 
allows a very direct repre- 
sentation of the problem 
domain in the implemen- 
tation. 

received by the interface layer. This be- 
havior is described by a script-like control 
structure, which expresses the shallow 
logic used to describe the system’s re- 
sponse to events. 

The script is implemented by message 
sends to objects in the business-object 
layer. The function-manager script deals 
with L‘what’l to do, delegating the “how” 
of the event response to objects in the 
business-object layer. The function man- 
ager coordinates actions among the many 
business objects that are involved in the 
event response. It also provides additional 
behaviors to provide accountability and 
control and to deal with any side effects of 
the event response. 

During the design of CRIS-II, some 
developers argued that the process layer 
was unnecessary because business objects 
could implement its behaviors. However, 

we included the process 
laver in the archtecture 

OUR SYSTEM 
HAS AN OBJECT 
PERSPECTIVE 
BUT USES 
NON-OBJECT- 
ORIENTED 
SERVICES. 

Interface layer. The in- 
terface layer connects the 
system with its users. It contains on-line 
dialogues, batch processes, interfaces to 
other applications, and internal, system- 
triggered events. Interface components 
are not always objects, but they have access 
to objects and message-passing fadties. 

The interface layer triggers business 
functions in the process layer by message 
sending. Because each business funtion is 
implemented as a first-class object, any in- 
terface component has potential access to 
every business function in the system, per- 
mitting the widespread dynamic sharing 
of large units of application function. 

Roce~s by~r. The process layer is built 
out of objects called function managers. 
The principal behavior of a function man- 
ager is to carry out the response to events 

because it narrows the in- 
terface from the objects at 
the interface layer to the 
objects in the business- 
object layer. The function 
manager objects hide in- 
essential detail and supply 
large units of reusable 
business function to the 
interface layer. 

Wlsiness-object byer. The 
business-object layer consists of objects 
and methods that model a specific busi- 
ness. The object behaviors simulate the 
enterprise with their knowledge of “how” 
to implement function. Both the interface 
and process levels access object behaviors 
through messages. 

The business-object layer has sub- 
layers. A simple example is its response to 
the arrival of a new meter reading passed 
fiom the interface layer: 

What  do you do with a meter read? 
If the read is suitable for billing, then 

render a bill. 
How do you know a read is 

suitable for billing? 
How do you render a bill? 

Successive answers to L ‘ H ~ ~  do you...?” 
questions produce layers of functions that 
produce additional layers of functions 

within the business-object layer, begin- 
ning with business policy and practice and 
ending with the technical details of the 
current implementation. Fundamental to 
the design is procedural abstraction or 
separation of concerns. We adopted ob- 
ject-oriented techniques to realize the sys- 
tem architecture directly. 

TECHNICAL DESCRIPTION 

CRIS-11 operates on an IBM main- 
frame. It uses the MVSESA operating 
system, the DB2 relational database man- 
ager, the CICS (Customer Inquiry and 
Control System) on-line transaction man- 
ager, and PMwithobject-oriented exten- 
sions as its principal language. ClUS-II is a 
small to medium-size commercial system 
in this environment. 

According to Peter Wegner’s de6ni- 
tion,’ CRIS-II is object-oriented: It sup- 
ports object functionality, object manage- 
ment by classes, and class management by 
inheritance. Its customized technical 
model borrows much terminology and 
many architectural concepts from 
Smdtalk-802 and Brad Cox’s w0rk.j But 
CRIS-II is really a hybrid: It retains an 
object perspective but uses the non-ob- 
ject-oriented services ofMVS/ESA, DB2, 
and CICS. 

General chtmcteristicr CRIS-11 provides 
for untyped variables and dynamic mes- 
sagmg, uses encapsulated object descrip- 
tions to lessen the effect of change, and 
carries class information into the execu- 
tion environment. The execution envi- 
ronment most nearly resembles Smalltak 

+ An object is an instance of a class. It 
inherits instance variables and behaviors 
born a superclass. All objects are descen- 
dants of class Object. 

+ An object has both class and instance 
methods. 

+ Objects’ behaviors are implemented 
as methods written in PLA. A method is a 
separately compiled, executable unit. The 
necessary bindings for a method are com- 
pleted at  execution time. 

+ A method is known to the environ- 
ment by its “selector” name. 

+ Classes and their methods are repre- 
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sented in an entity-relation-attribute dic- 
tionary, extended to include design items 
for an object-oriented system. The dic- 
tionaries are loaded into memory on de- 
mand. In memory, the dictionaries are 
first-class objects. 

+ The instance variables of a class may 
be changed without recompiling the 
class’s or descendant classes’ methods. 

6 Objects communicate through mes- 
sage passing. To support polymorphc be- 
haviors, message passing is dynamic. Sec- 
ond-order messaging, the equivalent of 
the Smalltalk “perform,” is supported (and 
used frequently). An object sends itself a 
message using a “self” token and addresses 
its immediate superclass using a “super” 
token. 

+ Atomic items, such as strings, nun-  
bers, and characters, are represented in 
memory as PLO data types rather than as 
objects. 

CRIS-IT consists of 8,600 methods and 
650 classes. The methods contain 70,000 
message-sending locations. 

Obtt memory model. To fully support a 
multiple-user, transaction-oriented appli- 
cation, the object system assigns each user 
a processing thread for the duration of the 
user’s session with the system. As Figure I 
shows, each thread has an associated in- 
stance of a Context object. Context is a 
container object that houses the objects 
the thread is currently manipulating and 
accessing. The Context object imple- 
ments behaviors for managing storage. It 
also provides the basic memory-manage- 
ment services required for object manage- 
ment, allocation, and reclamation of stor- 
age from discarded objects. 

The Context service can find all objects 
by class. This behavior is critical to sup- 
porting object identity as objects move to 
and from persistent storage. However, 
Context does not provide garbage collec- 
tion. Object storage is allocated in fixed- 
size units, so unlike objects can reuse ob- 
ject space for fast object allocation. The 
object system is largely implemented in 
itself; however, we reimplemented the 
lowest levels of object storage in PLO to 
improve performance. 

As an application executes, it creates 

F i p r e  1. The object memory model fir a thread. 4 thread sees objects thrvzqh Context, a solitainer object fir  - 
applicatiox ohjects that it manipulates and accesses. ill 

new objects and puts them in a Context 
object; Context grows and shrlnks in re- 
sponse to object creation and destruction. 
Context relocates objects in memory to 
consolidate the memory it manages. 

Transaction management. In addition to 
basic object-management services, Con- 
text enables transaction management by 
implementing basic versioning behaviors. 
As the application responds to the events it 
processes, it creates new objects and posi- 
tions them in a Context object. Generally, 
new objects are initialized with data phys- 
ically stored in a relational database man- 
ager. Each database row has an identifier 
guaranteed to be unique across the system. 

Before introducing a new object, the 
behaviors that implement object persis- 
tence search the Context object to ensure 
that the object is not already present 
w i h  it. This techmque lets applications 
address objects by their unique identifier 
with complete assurance that the most re- 
cent version of the object is returned. 

When it places a new object in Con- 
text, an abstract behavior saves the current 
values of the object’s instance variables. 

Tiate oljects car2 exist within a thread. 

Thus, an object can tell if it has been mod- 
ified by comparing its current values with 
its saved values. This t echque  optimizes 
processing when objects are returned to 
the database manager. Also, the system 
can create detailed audit trails in auniform 
way. System controls often dictate that 
“before” and “after” values of instance 
variables be retained in special Activity ob- 
jects. 

LMany application exceptions and side 
effects are triggered when certain vari- 
ables change. For example, a senice-order 
status change may need to be communi- 
cated to other systems. Generalizing the 
identification of changes lets the system 
abstract side-effect and exception han- 
dling into a superclass for all persistent 
objects. T h s  helps application maintain- 
ers, who may need to change side-effect 
dehtions.  

Multiple instances of Context may 
exist. By reinstating varying Contexts, the 
system can provide very powerful opera- 
tions, including a full logical unit Undo to 
reset the state of all objects to the last 
checkpoint. A single processing thread 
can also pursue alternate transaction 



Figure 2. A partial view of the whole-partstmcmre 
of an Account. In the BillingAccount object, the De- 
posit and Agreement objects are represented as in- 
stance variables that are mdered collections. 

paths. 
The external interface layer controls 

the logical unit of work. When a business 
event completes, the interface component 
informs its Context object. The Context 
object iterates over its components, tellmg 
each one to save itself. Objects that have 
experienced real changes write themselves 
to the database. Each object understands 
its denormalization requirements and for- 
eign key relations, and optimizes its write 
operations appropriately. Overall, the 
Context object ensures that database- 
manager operations occur in a consistent 
sequence to improve database-manager 
response and to avoid deadlocks, a nag- 
ging problem in maintaining complex 
shared structures in relational systems. 
Following these actions, the Context ob- 
ject begins processing side effects for the 
current event and, as a last step, makes the 
saved and current values of each object 
the same. 

At the end of a logical unit of work 
(when a company representative com- 
pletes a telephone call with a customer, for 
example, or when a bilhng function a e -  
ates a bill), the system no longer needs 
many of the objects in Context: In these 
situations, the Context object is sent a 
“clear” message to erase most of its objects 

l 

and reclaims their storage space. Some ob- 
iects, such as those that identifv the cur- ~ 

dation language. 
Because more than 100 SOL opera- 

rent’thread and its user, survivi a “clear” 
message and respond only to the more 
forceful “purge” message. 

The objects’ ability to understand clear 
and purge messages permits specialization 
of behavior as objects are finalized. Thus, 
objects can be synchronized with re- 
sources outside the object environment’s 
control (the transactions and data resource 
managers). 

Reclaiming storage on the basis of a 
logical unit of work supplies a rudimentary 
garbage-collection mechanism for short- 
lived transactions but still requires the ex- 
plicit destruction of objects. This was the 
largest single source of techcal  program 
errors. A real garbage collector would 
have been invaluable. 

Database-manager interface. C RI S -11’s 
persistent data storage consists of approx- 
imately 150 relational tables managed by 
DB2. The tables occupy 
approximately 100 
Gbvtes of disk mace. The 

- I  

tions are issued each second in the on-line 
system, each concrete class of DBZObject 
has methods for performing these same 
operations with static SQL. In most cases, 
a repository provides the code for these 
methods, but we sometimes handcrafted 
methods to improve access efficiencies. 
During the initial development, we used 
default behaviors because 

+ they generated dynamic SQL state- 
ments, whch providcd flexibility and les- 
sened the need for changes in the database 
schema, and 

+ they let each developer have his own 
relational tables to reduce the coordina- 
tion required among developers when 
testing. 

The implementations in the concrete 
classes are a concession to performance 
that would be unnecessary if the data man- 
ager were more sophisticated. 

The database-manager interface is a 
sublayer of the business- 
object layer and separates 
amlicat ion concerns 

largest table contains ap- THE EXTERNAL &m the techtllcal details 
of the current implemen- 
tation. It is a low-level ab- 
straction in the architec- 

proximately rows of information. 75 million 1 !N:FACE 
Each business-object 

ture, and most business 
behavior is insulated from 
it. w e  can easily substi- 

coNTRoLS THE I LOGICAL UNIT 
class has, in most cases, a 
one-to-one correspon- 
dence with a relational 

I OF WORK. table, in which rows in the 
table corresDond to in- 
stances of the object. But 
an instance of an active 
business object has a more 
complex structure than its corresponding 
database row. As Figure 2 shows, it con- 
tains additional instance variables that 
represent the object‘s whole-part struc- 
ture. Extensions to the accessor protocols 
also let clients of objects retrieve thevalues 
of instance variables as the values were at 
the start of logical application units of 
work. 

Persistent objects, those business ob- 
jects that have corresponding relational 
tables, are descendants of DBZObject, an 
abstract class that implements generalized 
data access behaviors using Structured 
Query Language, a relational data-manip- 

7 0  

tute alternate technical 
implementations. One 
operating mode substi- 
tutes basic file operations 
for the data manager. 

navigation. Navigational messages 
are used to traverse the whole-part smc- 
ture of an object. Each object understands 
its component parts and implements a se- 
lector for returning each part. For exam- 
ple, in Figure 2 the BillingAccount 
object’s whole-part structure includes the 
Deposit and Agreement objects. To the 
BillingAccount object, these two parts are 
instance variables that are Or- 
deredCollections associated with it. 
BillingAccount’s methods return to the 
environment its Agreements (in response 
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to the selector “agreernents”) and its De- 
posits (in response to the selector “depos- 
its”) as OrderedCollections. 

In relational tables, foreign keys point 
to the parent in a whole-part relation. In 
this example, Deposit is part of 
BillingAccount, so storing the 
RillingAccount key in the Deposit row’s 
foreign key column makes that Deposit 
row part of a given BillingAccount. These 
rows are accessed with straightforward 
SQL statements. 

CRIS-I1 uses a “lazy initialization” 
techque:  When an object is first initial- 
ized, the instance variables that corre- 
spond to its parts are assigned null values. 
The first time a message is sent for its con- 
tents, that part is initialized. 

Objects also include a behavior to nav- 
igate to the parent or “whole” of the 
whole-part relationship. For example, a 
Deposit object could access its parent 
BillingAccount object. 

In th~s way, CRIS-II’s navigation be- 
havior assembles, from related encapsu- 
lated objects, the rich data states an appli- 
cation function requires. Other  
commercial applications based directly on 
relational databases contain bulky code to 
gather this much data from the relational 
tables. CEUS-II’s approach reduces cou- 
pling and eliminates most of the data-ac- 
cess code. 

Typing. CRIS-II permits, but does not 
require, object type specification for a 
method’s variables. Declaring an object’s 
type is a promise that the variable is at least 
of the declared type in the inheritance hi- 
erarchy. TyFe declarations improve per- 
fonnance for accessors (the behaviors that 
allow clients to set and return the values of 
instance variables). A review of our record 
of program errors shows that eliminating 
mandatory typing did not cause a signifi- 
cant number of runtime errors. 

TyFing ofwriables is only one example 
of more general schemes for conipile-time 
assertions. The hope is that the compiler 
can prove (or disprove) the assertion for 
efficient, e a r I ~ 7  detection of error. With 
typing of variables, a program 7nny be cor- 
rect, if and (unfortunately) only if the val- 
ues present in the variable are of the spec- 

WHY BROOKLYN UNION NEEDED AN OBJECT-ORIENTED SYSTEM 
Brooklyn Union Gas is 

a utility company that dis- 
tributes natural gas to com- 
mercial and residential 
customers in the New York 
City boroughs of Brook- 
lyn, Staten Island, and 
Queens. Its aistomer infor- 
mation system manages 
the major revenue cycle, 
which includes field-ser- 
vice orders, cash process- 
ing, credit and collections, 
meter reading, billing, and 
general accounting. Each 
year, the system processes a 
one-billion-dollar annual 
revenue stream. 

Like m a n j 7  utilities, 
Brooklyn Union first auto- 
mated customer infonna- 
tion management in the 
1960s and then 
reimplemented the system 
during the early 1970s. In 
1985 and 1986, the com- 
pany planned to replace its 

early 1970s vintage 
customer information sy- 
rem, CRIS-I, using state- 
of-the-practice techniques 
(structured and data-driven 
design techniques and inte- 
grated CASE tools). As this 
effort went forward, the 
project seemed in danger 
of duplicating the old 
system’s monolithic charac- 
teristics. Structured analy- 
sis showed that the 
system’s complexity was 
much larger than antici- 
pated. Something was 
wrong; it was time to re- 
think the problem. We re- 
flected on the nature of 
business systems them- 
selves and concluded that 
they are hest underjtood as 
simulations of the enter- 
prise and its environment. 

We decided that the 
state-of-the-practice tech- 
niques in 1987 were not ad- 

ified type. ’Thc “only if’ clause puts costly 
limitations on the program’s flexibility. 
Nothing in our experience with CKIS-I1 
shows that object typing makes error-de- 
tection efficient. On the contrary, thc in- 
flexibility introduced by mandatory typing 
of variables is harmful. A better approach 
is to rcgxd ty;Iiing of variables as onc 
among a variety of assertions you can 
make a t  some point in the development 
cycle, and onc ofa variety of techniques to 
ensure efficient error prevention and 
elimination. 

DEVELOPMENT ENVIRONMENT 

The fine granularity of object-oriented 
applications and our system’s size made 
extensive development tools essential. You 
cannot do object-oriented development 
on this scale with just a compiler and an 

equate to address th~s un- 
derstanding. An object-ori- 
ented design and imple- 
mentation that directly 
represented the problem 
domain in the implementa- 
tion would best serve the 
conipany’s needs for its pri- 
m q  information system. 

Development and im- 
plementation of the new 
application, CRIS-JI, took 
place between 1987 and 
1989, at its peakinvolving 
180 Brooklyn Union Gas 
and Andersen Consulting 
employees. The system 
took 365 work years to de- 
velop, plus an additional 24 
for user training. 

REFERENCE 
1. E. Andersen and B. 
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Gas: OOPS on Big Iron,” 
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editor. When we consmicted the tools 
early in the project, we used niany tradi- 
tional mainframe components, including 
IRM’s ISPF, DR2, and PIA preprocessor. 
Other development software includes a 
screen painter, a code generator, and a re- 
port writer. 

At the center ofthese tools is an exten- 
sible entity-relation-attribute dictionary 
with information about the applications 
that comprise CIUS-11 and its emiron- 
ment. The central dictionary holds and 
rnanages all system coniponents. 

For thc object environment, it pro- 
vides facilities for browsing object de- 
scriptions and methods. It provides cross- 
referencing of messages, so a developer 
can locate all methods that are senders of a 
particular message or all methods that im- 
plement a partidar message. 

Frequently, developers locate hehav- 
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Figure 3. Flml graph of transfers between methods daring the cuhlatimi ofthree gas bills. The puttern 
rewed behaviors repeuu- at allfiur abstraction levels. 

iors using a cross-class browser, which lo- 
cates behaviors by matching portions of 
class and behavior names. This is more 
useful in practice than searching the fixed 
class hierarchy. 

During the development of CRTS-E, 
all project team members had access to the 
dictionary and used it to communicate de- 
sign information and changes. After in- 
stallation, the dictionary became the cen- 
tral facility for the maintenance and 
extension of CRIS-11. 

In addition to performing basic object- 
oriented development functions, the dic- 
tionary maintains h k s  between the inter- 
face components and the events they 
process, as well as the objects responsible 
for implementing the response to the 
events. The dictionary tracks system test 
scenarios and stores scripts to execute 
them. It supports code generation, testing 
tools at the programmer and integration 
level, and configuration management for 
object behaviors. 

Our work on CRIS-II shows that ex- 
tensive training in object techniques is 
required only for a small number of 

i highly skilled application developers. 
Most application developers should 
work in highly structured frameworks in 
which they do not have to understand 

the techniques completely. 

PERFORMANCE 

CRIS-11 operates from a central con 
puter and supports more than 400 concu 
rent users. Every evening it process1 
more than 100,000 business transaction 
Overall, it uses as much or less process 
capacity and more memory than trad 
tional implementations in th~s  enviroi 
ment: 

+ The combined path length throug 
the transaction and database manager 
about 1.1 million instructions for the ave 
age interactive exchange. The system d 
livers subsecond response in such e 
changes. 

+ The system’s interactive compone 
processes 10 to 12 CICS transactions p 
second and uses approximately 12 MIE 
on an IBiM 30905 processor. 

+ Three million SQL statements a 
executed per day. 

+ The working set size for the obje 
system and the transaction and database 
managers is about 120 Mbytes. 

When busy, the system completes 
4,000 message sends per second. Message 
passing is dynamic, but we optimized it to 
recognize that object types and selectors 

have a tendency to remain constant at a 
given calling point. With &IS optimiza- 
tion, less than two percent of processor 
time is spent in messaging activities, yet 
the system retains its flexibility. 

Obviously, message sending takes 
longer in a procedural language than does 
subroutine calling, but its value far out- 
weighs its cost. A too-narrow focus on op- 
timizing performance at very low levels 
can actually lessen the system’s overall 
performance. For example, dynamic mes- 
saging lets our object system more effec- 
tively control the application’s use of the 
database manager, which in turn provides 
overall performance gain. 

We believe performance assessments 
should emphasize the life-cycle difficulties 
of maintaining tightly coupled systems 
over the technical problems of optimizing 
individual subroutine invocation. 

REUSE EXPERIENCE 

Our experience with CRIS-II for its 
more than two years of operation provides 
partial answers to questions about reuse in 
object systems and the differences be- 
tween object-oriented systems and sys- 
tems constructed using other techniques. 
Here we report measurements of code 
reuse and system behavior. 

New diilogue exanple. A new dialogue 
added to CRIS-11 provides four displays so 
that users can correct mismatches between 
field conditions and database contents. A 
new information-systems employee at the 
gas company - one not involved in 
CEUS-II’s development - implemented 
the dialogue. When she started the assign- 
ment, she was unfamiliar with the avail- 
able classes and behaviors. In addition, she 
had to create a new class of persistent ob- 
ject to support the dialogue, so the work 
was more complex than most mainte- 
nance and enhancement tasks. 

After she completed the work, we 
counted the raw lines added to the system. 
T h s  analysis showed that 2,000 lines had 
been added, but a total of 40,000 lines of 
business-object behaviors had been used 
to support the dialogue. In other words, 
the ratio of added code to reused code was 
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120. The 40,000-linc count includes only 
hehaviors that implenient business fimc- 
tion - we excluded technicd behaviors 
for dialogue nlaiiageitient and so forth. 

Even this amount of reuse wouldn’t lie 
a win if had been very hard to find the 
hehailors to reuse. This wasn’t the case. 
When she yaw the t o d  line counts, the 
programmer was surprised at the large 
number. Her inipression of the job’s size 
came from the lines she added, not the 
topal lines. 

This and other examples show the 
need for a new role in the developnient 
environnient: software assemhler. ‘The 
software assembler would create new in- 
terface components and some shallow 
logic, and occasionally add an application 
behavior. Most of the necessary behaviors 
would be in inventory. 

Systemwide example. To ;uiaIye Ijehav- 
ior reuse ti-oin a different perspective, we 
summarized all additions made during a 
year. ln calendar year 1991, CKIS-TI was 
extended to deal with 
work- cl u e 11 e i n  a ria pe- 
ment, automatic collec- 
tion-call Iiandling, and 
automatic hill payment. 
1;orty classes and 908 
message-sending compo- 
nents were added. There 
are 3,344 message-send- 
ing locations within these 
components. Because the 
CRIS-I1 object system 
supports dynamic mes- 
saging, it is impossible to 
find all iniolernenmtions 

Billing example. Figure 3 shows a flow 
graph of all transfers among methods clur- 
ing the calculation of three gas hills. ‘I‘liis 
is a dynamic view of helia\ior reuse in the 
running application tluring its response to 
the ;irrival of a meter rcading. ‘ I h  produce 
the figure, a paph-layout algorithm pro- 
cessed the distinct pairs of  niethod-to- 
method calls during the creation of three 
81s hills. Wherever a linc starts or  ends, 
there is A node representing a method in- 
vocation. ‘I’hc layout rules are as follows: 

+ <:enter a parent (a sending method) 
above all its children. 

+ Position ;i child (an impleincnting 
method) below all its parents. 

+ Working from left to right, never re- 
position a node. Ifa node has already heen 
placed and is used again, just draw another 
line to it. 

As a graphic, the tipire is badly bal- 
aiiced: ‘l’here is nothing in die lower right 
corner. This iin1)alancc demonstrates the 

extent of component 
reuse. As the lavout alpo- 
rithni proceeds froin lek 
to right, reused behaviors 
result in a linc that runs 

TYPICALLY, 
BUSINESS 

down and to  the left. 
hkthocls in the upper 
right found fewer and 

SYSTEMS 
HAVE REUSED 
VERY FEW APPLICATION ready in the laput. 

fewer hehaviors not al- 

’I’he graph shows very 
COMPONENTS. tine-pined reuse - the 

components being reused 
have an average size of 30 
lines. 

that support the message-sending loca- 
tions. However, by analyzing the source 
code we could trace 669 distinct methods. 
Of these methods, +I6 were created be- 
fore 1991. ’Ihat is, of 669 I-iehaJiors re- 
quired to support the work done in 1991, 
446 (67 percent) were already in the be- 
habior inventory. 

The number of reused application 
components in ljusiness system is typi- 
cally very small. When reuse occurs, it i s  of 
minor or technical components (date- 
handling routines, coninion I/O routines). 
Our findings are significant because of the 

13ecausc of the ru le  that places a child 
below id1 its parents, Ion-level or hasic be- 
haviors drift toward the bottom of the 
chart llnd high-level or application behav- 
iors drift to the top. This corresponds to the 
system’s internal layering of the “hows,” 
progressing from how the business i s  to be 
done, down to how to do business with the 
current technical artifacts. 

’l’he node a t  the lower left corner is 
basicNew, the inherited behavior that 
handles the raw mechanics of object cre- 
ation. This behavior is highly reused sim- 
ply because die technicalities of memory 

Process loyer - 5% 

Business oblect loyer - 6.5 % 

nianapnent can be reused. Much more 
interesting are the left-leaning lines at 
every level in the diagram, indicating 
reuse even of high-level application he- 
hav-iors. Furthermore, while there are 
fewer left-leaning lines at the top of the 
diagram, each reused component at the 
upper levels of the diagram represents a 
very large unit of reuse. 

The extent of reuse across the system is 
even greater than this figure indicates, be- 
cause it shows only one of many roots in 
the application. Asearch from an account- 
ing behavior that appears in the upper 
third of this diagram showed that the be- 
havior can be reached from 164 roots. 

’I‘his pattern of h i  into and fan out 
horn hghly reused behaviors repeats a t  all 
abstraction levels. Labels in the figure 
show h s  by indicating four general a t e -  
gories of behavior: 

+ specific business application (create 
a gas hill), 

+ generic business behaviors (apply a 
ledger entry), 

+ useful high-level techcal  behaviors 
(behaviors of collection classes and so on), 
and 

+ basic technical behaviors (like 
basicNew and other memory-manage- 
inent objects). 

In a system with properly modeled ge- 
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neric business functions and robust sup- 
port for object-oriented mechanics, you 
can develop and add specific applications 
rapidly. 

Lines of code by byer. Figure 4 shows an 
analysis of lines of code by architecture 

in a purely object-ori- 
ented fashon, represent 
more than half of the 
total. In the business-ob- 
ject layer, the largest ob- 
ject contains no more 
than six percent of the 
total code, showing that 
the application 
functionality is well dis- 
tributed across the object 
set. -. 

essential requirement for business systems 
is orderly evolution over time, with mini- 
mal constraints on the design trajectory. 

If the system models the real environ- 
ment, and the technical artifacts it needs 
are well insulated from each other, 
changes to the system are likely to exhibit 

DEVELOPERS 
SHOULDN‘T 
TRY TO 
SPECIFY THE 
SYSTEM MORE 
THAN A FEW 
STEPS INTO ITS 
LIFE CYCLE. 

” 
easy to ask for will be easy 
to do. 

For CRIS-11, we ex- 
tended an entity-relation- 
attribute dictionary to in- 
clude design items for an 
object-oriented system 
and then developed tools 
that operated on the data. 
We thmk a better tech- 
nique is to use the object 
svstem itself to contain its 

‘l‘he process layer 
comprises five percent of 
the total, which shows 
that the architecture lets the application 
economically state “what” is to be done, 
based on the inventory of behavior in the 
business-object layer. 

The hybrid interface layer is bulky, yet 
the average size of a component in this 
layer is still only 100 lines. T h s  layer has 
more than 1,000 components. The inter- 
face layer was builtusing integrated CASE 
tools, whch tend to generate duplicate 
code in each component. The layer would 
be much smaller if these components were 
objects that could reuse code through in- 
heritance. 

RIS-11 is an example of a commercial C data-processing system that is critical 
to the economic viability of the enterprise 
it supports. 

Systems like CRIS-I1 are better 
thought of as small economies, rather than 
large computer programs. As they are 
used and evolve, their trajectory through a 
design space is the product of their own 
history and incidents in their environ- 
ment. Such systems are so large they actu- 
ally alter their environment. 

System developers must recognize that 
specifylng more than a few steps ahead in 
this trajectory is simply impossible. The 

own development, de- 
sign, and analysis descrip- 
tion. O u r  experience 

shows enormous benefit from having fully 

bootstrapped environments. In CRIS-II. 
it would have been better simply to extend 
the object to fully maintain its own 
metadescription. 

In CRIS-11, the class description and 
inheritance and messaging mechanism: 
are constructed w i h  the object system 
they describe. However, the mechanism: 
are outside the extended PL/I language 
definition that allows methods to be codec 
and messages to be sent. 

This separation seems very generallq 
applicable. If object-oriented extension: 
are desirable in existing languages, devel- 
opers should consider constructing theE 
using a language-neutral base for describ- 
ing the class structure and messaging 
mechanism. They should limit languagc 
extensions to bindings to the class descrip- 
tions, method implementation, and be- 
havior invocation. The  work on thc 
CLOS (Common Lisp Object System 
metaobject protocol4 shows how thi! 
might be done, as does the System Objec 
Model in IBM’s OS12 Version 2.0.5 4 
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