
I) Using dynamic
object-orien ted
features, a
mainframe
implementation o f a
Smalltalk-like
execution
environment
suppovts a critical
application and can
accommodate change.

I

Object-Onented ~

Development

Union Gas
at Brmklyn ~,

~1
JOHN DAVIS, Andersen Consulting
TOM MORGAN, Brooklyn Union Gus

bject-oriented
principles can resolve long-standing
problems of software construction and
evolution. The Brooklyn Lnion Gas
Company found t h s to be true when it re-
placed its outdated customer information
system wlth the new Customer-Related
Information System developed using ob-
ject-oriented techques.

Brooklyn Union’s decision to use ob-
ject orientation in CRIS-IT simplified de-
velopment, improved communication,
and motivated personnel.

Object-oriented concepts focused on
the model, or simulation, aspects of sys-
tem building and let us base the system ar-
chitecture on the essential aspects of the
underlying problem domain. System de-
velopers and users could speak the same
language because the new system mod-
eled the company’s business environment.
We could design techca l and organiza-
tional artifacts as replaceable components

~~ ~~~~~~~~ ~~~~~ ~~
~~~~~~~~~~~~~ ~~ 

~~~ 
~ ~~~

I E E E S O F T W A R E 07407459/93/0100/0067/503 00 0 IEEE

CRIS-11’s implementation in a
Smalltalk-like execution environment
with object-oriented features lessened
coupling between components, com-
pared with other object systems. Though
it is fully object-oriented, the system ac-
commodates many traditional, non-ob-
ject-oriented components such as a rela-
tional database manager, an on-line
transaction manager, a batch report writ-
er, and a user-interface dialogue manager.
Also, CRIS-IT interfaces to more than 1s
other applications. Two years of mainte- ~

nance and enhancements since its start-up 1

we can naturally adapt its object model to
change and to incorporate more applica-
tions.

in January 1990 have demonstrated that

APPLICATION ARCHITECTURE

System architectures are often de-
scribed in terms of today’s artifacts for re-

~ ~~~ ~
~ ~ ~~ ~~~ -~

6 7

alizing the architecture. In contrast, the
CRIS-II architecture is structured in three
layers that are derived from essential as-
pects of the underlying problem domain.
The interface, process, and business-ob-
ject layers address, respectively, the
“when,” “what,” and L‘how” in the gas util-
ity environment.

The architecture model uses layers to
package the system. The layers of the ar-
chitecture isolate functional concerns
from the user interface and from physical
representations of data. Separation of in-
terface concerns from other layers in the
archtecture allows business functions to
be used from multiple user interfaces.

The model avoids brittleness - it can
adapt to evolving company policies and
practices over time and still retain its con-
ceptual structure.

The use of object-oriented techniques
in all layers of the archi-
tecture Drovides a con-
vincing and sustainable
model for representing
the system. The use of
objects within the frame-
work of the architecture
allows a very direct repre-
sentation of the problem
domain in the implemen-
tation.

received by the interface layer. This be-
havior is described by a script-like control
structure, which expresses the shallow
logic used to describe the system’s re-
sponse to events.

The script is implemented by message
sends to objects in the business-object
layer. The function-manager script deals
with L‘what’l to do, delegating the “how”
of the event response to objects in the
business-object layer. The function man-
ager coordinates actions among the many
business objects that are involved in the
event response. It also provides additional
behaviors to provide accountability and
control and to deal with any side effects of
the event response.

During the design of CRIS-II, some
developers argued that the process layer
was unnecessary because business objects
could implement its behaviors. However,

we included the process
laver in the archtecture

OUR SYSTEM
HAS AN OBJECT
PERSPECTIVE
BUT USES
NON-OBJECT-
ORIENTED
SERVICES.

Interface layer. The in-
terface layer connects the
system with its users. It contains on-line
dialogues, batch processes, interfaces to
other applications, and internal, system-
triggered events. Interface components
are not always objects, but they have access
to objects and message-passing fadties.

The interface layer triggers business
functions in the process layer by message
sending. Because each business funtion is
implemented as a first-class object, any in-
terface component has potential access to
every business function in the system, per-
mitting the widespread dynamic sharing
of large units of application function.

Roce~s by~r. The process layer is built
out of objects called function managers.
The principal behavior of a function man-
ager is to carry out the response to events

because it narrows the in-
terface from the objects at
the interface layer to the
objects in the business-
object layer. The function
manager objects hide in-
essential detail and supply
large units of reusable
business function to the
interface layer.

Wlsiness-object byer. The
business-object layer consists of objects
and methods that model a specific busi-
ness. The object behaviors simulate the
enterprise with their knowledge of “how”
to implement function. Both the interface
and process levels access object behaviors
through messages.

The business-object layer has sub-
layers. A simple example is its response to
the arrival of a new meter reading passed
fiom the interface layer:

What do you do with a meter read?
If the read is suitable for billing, then

render a bill.
How do you know a read is

suitable for billing?
How do you render a bill?

Successive answers to L ‘ H ~ ~ do you...?”
questions produce layers of functions that
produce additional layers of functions

within the business-object layer, begin-
ning with business policy and practice and
ending with the technical details of the
current implementation. Fundamental to
the design is procedural abstraction or
separation of concerns. We adopted ob-
ject-oriented techniques to realize the sys-
tem architecture directly.

TECHNICAL DESCRIPTION

CRIS-11 operates on an IBM main-
frame. It uses the MVSESA operating
system, the DB2 relational database man-
ager, the CICS (Customer Inquiry and
Control System) on-line transaction man-
ager, and PMwithobject-oriented exten-
sions as its principal language. ClUS-II is a
small to medium-size commercial system
in this environment.

According to Peter Wegner’s de6ni-
tion,’ CRIS-II is object-oriented: It sup-
ports object functionality, object manage-
ment by classes, and class management by
inheritance. Its customized technical
model borrows much terminology and
many architectural concepts from
Smdtalk-802 and Brad Cox’s w0rk.j But
CRIS-II is really a hybrid: It retains an
object perspective but uses the non-ob-
ject-oriented services ofMVS/ESA, DB2,
and CICS.

General chtmcteristicr CRIS-11 provides
for untyped variables and dynamic mes-
sagmg, uses encapsulated object descrip-
tions to lessen the effect of change, and
carries class information into the execu-
tion environment. The execution envi-
ronment most nearly resembles Smalltak

+ An object is an instance of a class. It
inherits instance variables and behaviors
born a superclass. All objects are descen-
dants of class Object.

+ An object has both class and instance
methods.

+ Objects’ behaviors are implemented
as methods written in PLA. A method is a
separately compiled, executable unit. The
necessary bindings for a method are com-
pleted at execution time.

+ A method is known to the environ-
ment by its “selector” name.

+ Classes and their methods are repre-

6 8 J A N U A R Y 1993

sented in an entity-relation-attribute dic-
tionary, extended to include design items
for an object-oriented system. The dic-
tionaries are loaded into memory on de-
mand. In memory, the dictionaries are
first-class objects.

+ The instance variables of a class may
be changed without recompiling the
class’s or descendant classes’ methods.

6 Objects communicate through mes-
sage passing. To support polymorphc be-
haviors, message passing is dynamic. Sec-
ond-order messaging, the equivalent of
the Smalltalk “perform,” is supported (and
used frequently). An object sends itself a
message using a “self” token and addresses
its immediate superclass using a “super”
token.

+ Atomic items, such as strings, nun-
bers, and characters, are represented in
memory as PLO data types rather than as
objects.

CRIS-IT consists of 8,600 methods and
650 classes. The methods contain 70,000
message-sending locations.

Obtt memory model. To fully support a
multiple-user, transaction-oriented appli-
cation, the object system assigns each user
a processing thread for the duration of the
user’s session with the system. As Figure I
shows, each thread has an associated in-
stance of a Context object. Context is a
container object that houses the objects
the thread is currently manipulating and
accessing. The Context object imple-
ments behaviors for managing storage. It
also provides the basic memory-manage-
ment services required for object manage-
ment, allocation, and reclamation of stor-
age from discarded objects.

The Context service can find all objects
by class. This behavior is critical to sup-
porting object identity as objects move to
and from persistent storage. However,
Context does not provide garbage collec-
tion. Object storage is allocated in fixed-
size units, so unlike objects can reuse ob-
ject space for fast object allocation. The
object system is largely implemented in
itself; however, we reimplemented the
lowest levels of object storage in PLO to
improve performance.

As an application executes, it creates

F i p r e 1. The object memory model fir a thread. 4 thread sees objects thrvzqh Context, a solitainer object fir -
applicatiox ohjects that it manipulates and accesses. ill

new objects and puts them in a Context
object; Context grows and shrlnks in re-
sponse to object creation and destruction.
Context relocates objects in memory to
consolidate the memory it manages.

Transaction management. In addition to
basic object-management services, Con-
text enables transaction management by
implementing basic versioning behaviors.
As the application responds to the events it
processes, it creates new objects and posi-
tions them in a Context object. Generally,
new objects are initialized with data phys-
ically stored in a relational database man-
ager. Each database row has an identifier
guaranteed to be unique across the system.

Before introducing a new object, the
behaviors that implement object persis-
tence search the Context object to ensure
that the object is not already present
w i h it. This techmque lets applications
address objects by their unique identifier
with complete assurance that the most re-
cent version of the object is returned.

When it places a new object in Con-
text, an abstract behavior saves the current
values of the object’s instance variables.

Tiate oljects car2 exist within a thread.

Thus, an object can tell if it has been mod-
ified by comparing its current values with
its saved values. This t echque optimizes
processing when objects are returned to
the database manager. Also, the system
can create detailed audit trails in auniform
way. System controls often dictate that
“before” and “after” values of instance
variables be retained in special Activity ob-
jects.

LMany application exceptions and side
effects are triggered when certain vari-
ables change. For example, a senice-order
status change may need to be communi-
cated to other systems. Generalizing the
identification of changes lets the system
abstract side-effect and exception han-
dling into a superclass for all persistent
objects. T h s helps application maintain-
ers, who may need to change side-effect
dehtions.

Multiple instances of Context may
exist. By reinstating varying Contexts, the
system can provide very powerful opera-
tions, including a full logical unit Undo to
reset the state of all objects to the last
checkpoint. A single processing thread
can also pursue alternate transaction

Figure 2. A partial view of the whole-partstmcmre
of an Account. In the BillingAccount object, the De-
posit and Agreement objects are represented as in-
stance variables that are mdered collections.

paths.
The external interface layer controls

the logical unit of work. When a business
event completes, the interface component
informs its Context object. The Context
object iterates over its components, tellmg
each one to save itself. Objects that have
experienced real changes write themselves
to the database. Each object understands
its denormalization requirements and for-
eign key relations, and optimizes its write
operations appropriately. Overall, the
Context object ensures that database-
manager operations occur in a consistent
sequence to improve database-manager
response and to avoid deadlocks, a nag-
ging problem in maintaining complex
shared structures in relational systems.
Following these actions, the Context ob-
ject begins processing side effects for the
current event and, as a last step, makes the
saved and current values of each object
the same.

At the end of a logical unit of work
(when a company representative com-
pletes a telephone call with a customer, for
example, or when a bilhng function a e -
ates a bill), the system no longer needs
many of the objects in Context: In these
situations, the Context object is sent a
“clear” message to erase most of its objects

l

and reclaims their storage space. Some ob-
iects, such as those that identifv the cur- ~

dation language.
Because more than 100 SOL opera-

rent’thread and its user, survivi a “clear”
message and respond only to the more
forceful “purge” message.

The objects’ ability to understand clear
and purge messages permits specialization
of behavior as objects are finalized. Thus,
objects can be synchronized with re-
sources outside the object environment’s
control (the transactions and data resource
managers).

Reclaiming storage on the basis of a
logical unit of work supplies a rudimentary
garbage-collection mechanism for short-
lived transactions but still requires the ex-
plicit destruction of objects. This was the
largest single source of techcal program
errors. A real garbage collector would
have been invaluable.

Database-manager interface. C RI S -11’s
persistent data storage consists of approx-
imately 150 relational tables managed by
DB2. The tables occupy
approximately 100
Gbvtes of disk mace. The

- I

tions are issued each second in the on-line
system, each concrete class of DBZObject
has methods for performing these same
operations with static SQL. In most cases,
a repository provides the code for these
methods, but we sometimes handcrafted
methods to improve access efficiencies.
During the initial development, we used
default behaviors because

+ they generated dynamic SQL state-
ments, whch providcd flexibility and les-
sened the need for changes in the database
schema, and

+ they let each developer have his own
relational tables to reduce the coordina-
tion required among developers when
testing.

The implementations in the concrete
classes are a concession to performance
that would be unnecessary if the data man-
ager were more sophisticated.

The database-manager interface is a
sublayer of the business-
object layer and separates
amlicat ion concerns

largest table contains ap- THE EXTERNAL &m the techtllcal details
of the current implemen-
tation. It is a low-level ab-
straction in the architec-

proximately rows of information. 75 million 1 !N:FACE
Each business-object

ture, and most business
behavior is insulated from
it. w e can easily substi-

coNTRoLS THE I LOGICAL UNIT
class has, in most cases, a
one-to-one correspon-
dence with a relational

I OF WORK. table, in which rows in the
table corresDond to in-
stances of the object. But
an instance of an active
business object has a more
complex structure than its corresponding
database row. As Figure 2 shows, it con-
tains additional instance variables that
represent the object‘s whole-part struc-
ture. Extensions to the accessor protocols
also let clients of objects retrieve thevalues
of instance variables as the values were at
the start of logical application units of
work.

Persistent objects, those business ob-
jects that have corresponding relational
tables, are descendants of DBZObject, an
abstract class that implements generalized
data access behaviors using Structured
Query Language, a relational data-manip-

7 0

tute alternate technical
implementations. One
operating mode substi-
tutes basic file operations
for the data manager.

navigation. Navigational messages
are used to traverse the whole-part smc-
ture of an object. Each object understands
its component parts and implements a se-
lector for returning each part. For exam-
ple, in Figure 2 the BillingAccount
object’s whole-part structure includes the
Deposit and Agreement objects. To the
BillingAccount object, these two parts are
instance variables that are Or-
deredCollections associated with it.
BillingAccount’s methods return to the
environment its Agreements (in response

J A N U A R Y 1 9 9 3

to the selector “agreernents”) and its De-
posits (in response to the selector “depos-
its”) as OrderedCollections.

In relational tables, foreign keys point
to the parent in a whole-part relation. In
this example, Deposit is part of
BillingAccount, so storing the
RillingAccount key in the Deposit row’s
foreign key column makes that Deposit
row part of a given BillingAccount. These
rows are accessed with straightforward
SQL statements.

CRIS-I1 uses a “lazy initialization”
techque: When an object is first initial-
ized, the instance variables that corre-
spond to its parts are assigned null values.
The first time a message is sent for its con-
tents, that part is initialized.

Objects also include a behavior to nav-
igate to the parent or “whole” of the
whole-part relationship. For example, a
Deposit object could access its parent
BillingAccount object.

In th~s way, CRIS-II’s navigation be-
havior assembles, from related encapsu-
lated objects, the rich data states an appli-
cation function requires. Other
commercial applications based directly on
relational databases contain bulky code to
gather this much data from the relational
tables. CEUS-II’s approach reduces cou-
pling and eliminates most of the data-ac-
cess code.

Typing. CRIS-II permits, but does not
require, object type specification for a
method’s variables. Declaring an object’s
type is a promise that the variable is at least
of the declared type in the inheritance hi-
erarchy. TyFe declarations improve per-
fonnance for accessors (the behaviors that
allow clients to set and return the values of
instance variables). A review of our record
of program errors shows that eliminating
mandatory typing did not cause a signifi-
cant number of runtime errors.

TyFing ofwriables is only one example
of more general schemes for conipile-time
assertions. The hope is that the compiler
can prove (or disprove) the assertion for
efficient, e a r I ~ 7 detection of error. With
typing of variables, a program 7nny be cor-
rect, if and (unfortunately) only if the val-
ues present in the variable are of the spec-

WHY BROOKLYN UNION NEEDED AN OBJECT-ORIENTED SYSTEM
Brooklyn Union Gas is

a utility company that dis-
tributes natural gas to com-
mercial and residential
customers in the New York
City boroughs of Brook-
lyn, Staten Island, and
Queens. Its aistomer infor-
mation system manages
the major revenue cycle,
which includes field-ser-
vice orders, cash process-
ing, credit and collections,
meter reading, billing, and
general accounting. Each
year, the system processes a
one-billion-dollar annual
revenue stream.

Like m a n j 7 utilities,
Brooklyn Union first auto-
mated customer infonna-
tion management in the
1960s and then
reimplemented the system
during the early 1970s. In
1985 and 1986, the com-
pany planned to replace its

early 1970s vintage
customer information sy-
rem, CRIS-I, using state-
of-the-practice techniques
(structured and data-driven
design techniques and inte-
grated CASE tools). As this
effort went forward, the
project seemed in danger
of duplicating the old
system’s monolithic charac-
teristics. Structured analy-
sis showed that the
system’s complexity was
much larger than antici-
pated. Something was
wrong; it was time to re-
think the problem. We re-
flected on the nature of
business systems them-
selves and concluded that
they are hest underjtood as
simulations of the enter-
prise and its environment.

We decided that the
state-of-the-practice tech-
niques in 1987 were not ad-

ified type. ’Thc “only if’ clause puts costly
limitations on the program’s flexibility.
Nothing in our experience with CKIS-I1
shows that object typing makes error-de-
tection efficient. On the contrary, thc in-
flexibility introduced by mandatory typing
of variables is harmful. A better approach
is to rcgxd ty;Iiing of variables as onc
among a variety of assertions you can
make a t some point in the development
cycle, and onc ofa variety of techniques to
ensure efficient error prevention and
elimination.

DEVELOPMENT ENVIRONMENT

The fine granularity of object-oriented
applications and our system’s size made
extensive development tools essential. You
cannot do object-oriented development
on this scale with just a compiler and an

equate to address th~s un-
derstanding. An object-ori-
ented design and imple-
mentation that directly
represented the problem
domain in the implementa-
tion would best serve the
conipany’s needs for its pri-
m q information system.

Development and im-
plementation of the new
application, CRIS-JI, took
place between 1987 and
1989, at its peakinvolving
180 Brooklyn Union Gas
and Andersen Consulting
employees. The system
took 365 work years to de-
velop, plus an additional 24
for user training.

REFERENCE
1. E. Andersen and B.

Konsynski, “Brooklyn Union
Gas: OOPS on Big Iron,”
Hanwd Business School case
study ”2-192-144, Boston,
1991.

editor. When we consmicted the tools
early in the project, we used niany tradi-
tional mainframe components, including
IRM’s ISPF, DR2, and PIA preprocessor.
Other development software includes a
screen painter, a code generator, and a re-
port writer.

At the center ofthese tools is an exten-
sible entity-relation-attribute dictionary
with information about the applications
that comprise CIUS-11 and its emiron-
ment. The central dictionary holds and
rnanages all system coniponents.

For thc object environment, it pro-
vides facilities for browsing object de-
scriptions and methods. It provides cross-
referencing of messages, so a developer
can locate all methods that are senders of a
particular message or all methods that im-
plement a partidar message.

Frequently, developers locate hehav-

I E E E S O F T W A R E 71

Object-sysfem comforts 1 1 1

Base tethnitol behaviors

Figure 3. Flml graph of transfers between methods daring the cuhlatimi ofthree gas bills. The puttern
rewed behaviors repeuu- at allfiur abstraction levels.

iors using a cross-class browser, which lo-
cates behaviors by matching portions of
class and behavior names. This is more
useful in practice than searching the fixed
class hierarchy.

During the development of CRTS-E,
all project team members had access to the
dictionary and used it to communicate de-
sign information and changes. After in-
stallation, the dictionary became the cen-
tral facility for the maintenance and
extension of CRIS-11.

In addition to performing basic object-
oriented development functions, the dic-
tionary maintains h k s between the inter-
face components and the events they
process, as well as the objects responsible
for implementing the response to the
events. The dictionary tracks system test
scenarios and stores scripts to execute
them. It supports code generation, testing
tools at the programmer and integration
level, and configuration management for
object behaviors.

Our work on CRIS-II shows that ex-
tensive training in object techniques is
required only for a small number of

i highly skilled application developers.
Most application developers should
work in highly structured frameworks in
which they do not have to understand

the techniques completely.

PERFORMANCE

CRIS-11 operates from a central con
puter and supports more than 400 concu
rent users. Every evening it process1
more than 100,000 business transaction
Overall, it uses as much or less process
capacity and more memory than trad
tional implementations in th~s enviroi
ment:

+ The combined path length throug
the transaction and database manager
about 1.1 million instructions for the ave
age interactive exchange. The system d
livers subsecond response in such e
changes.

+ The system’s interactive compone
processes 10 to 12 CICS transactions p
second and uses approximately 12 MIE
on an IBiM 30905 processor.

+ Three million SQL statements a
executed per day.

+ The working set size for the obje
system and the transaction and database
managers is about 120 Mbytes.

When busy, the system completes
4,000 message sends per second. Message
passing is dynamic, but we optimized it to
recognize that object types and selectors

have a tendency to remain constant at a
given calling point. With &IS optimiza-
tion, less than two percent of processor
time is spent in messaging activities, yet
the system retains its flexibility.

Obviously, message sending takes
longer in a procedural language than does
subroutine calling, but its value far out-
weighs its cost. A too-narrow focus on op-
timizing performance at very low levels
can actually lessen the system’s overall
performance. For example, dynamic mes-
saging lets our object system more effec-
tively control the application’s use of the
database manager, which in turn provides
overall performance gain.

We believe performance assessments
should emphasize the life-cycle difficulties
of maintaining tightly coupled systems
over the technical problems of optimizing
individual subroutine invocation.

REUSE EXPERIENCE

Our experience with CRIS-II for its
more than two years of operation provides
partial answers to questions about reuse in
object systems and the differences be-
tween object-oriented systems and sys-
tems constructed using other techniques.
Here we report measurements of code
reuse and system behavior.

New diilogue exanple. A new dialogue
added to CRIS-11 provides four displays so
that users can correct mismatches between
field conditions and database contents. A
new information-systems employee at the
gas company - one not involved in
CEUS-II’s development - implemented
the dialogue. When she started the assign-
ment, she was unfamiliar with the avail-
able classes and behaviors. In addition, she
had to create a new class of persistent ob-
ject to support the dialogue, so the work
was more complex than most mainte-
nance and enhancement tasks.

After she completed the work, we
counted the raw lines added to the system.
T h s analysis showed that 2,000 lines had
been added, but a total of 40,000 lines of
business-object behaviors had been used
to support the dialogue. In other words,
the ratio of added code to reused code was

7 2 J A N U A R Y 1 9 9 3

120. The 40,000-linc count includes only
hehaviors that implenient business fimc-
tion - we excluded technicd behaviors
for dialogue nlaiiageitient and so forth.

Even this amount of reuse wouldn’t lie
a win if had been very hard to find the
hehailors to reuse. This wasn’t the case.
When she yaw the t o d line counts, the
programmer was surprised at the large
number. Her inipression of the job’s size
came from the lines she added, not the
topal lines.

This and other examples show the
need for a new role in the developnient
environnient: software assemhler. ‘The
software assembler would create new in-
terface components and some shallow
logic, and occasionally add an application
behavior. Most of the necessary behaviors
would be in inventory.

Systemwide example. To ;uiaIye Ijehav-
ior reuse ti-oin a different perspective, we
summarized all additions made during a
year. ln calendar year 1991, CKIS-TI was
extended to deal with
work- cl u e 11 e i n a ria pe-
ment, automatic collec-
tion-call Iiandling, and
automatic hill payment.
1;orty classes and 908
message-sending compo-
nents were added. There
are 3,344 message-send-
ing locations within these
components. Because the
CRIS-I1 object system
supports dynamic mes-
saging, it is impossible to
find all iniolernenmtions

Billing example. Figure 3 shows a flow
graph of all transfers among methods clur-
ing the calculation of three gas hills. ‘I‘liis
is a dynamic view of helia\ior reuse in the
running application tluring its response to
the ;irrival of a meter rcading. ‘ I h produce
the figure, a paph-layout algorithm pro-
cessed the distinct pairs of niethod-to-
method calls during the creation of three
81s hills. Wherever a linc starts or ends,
there is A node representing a method in-
vocation. ‘I’hc layout rules are as follows:

+ <:enter a parent (a sending method)
above all its children.

+ Position ;i child (an impleincnting
method) below all its parents.

+ Working from left to right, never re-
position a node. Ifa node has already heen
placed and is used again, just draw another
line to it.

As a graphic, the tipire is badly bal-
aiiced: ‘l’here is nothing in die lower right
corner. This iin1)alancc demonstrates the

extent of component
reuse. As the lavout alpo-
rithni proceeds froin lek
to right, reused behaviors
result in a linc that runs

TYPICALLY,
BUSINESS

down and to the left.
hkthocls in the upper
right found fewer and

SYSTEMS
HAVE REUSED
VERY FEW APPLICATION ready in the laput.

fewer hehaviors not al-

’I’he graph shows very
COMPONENTS. tine-pined reuse - the

components being reused
have an average size of 30
lines.

that support the message-sending loca-
tions. However, by analyzing the source
code we could trace 669 distinct methods.
Of these methods, +I6 were created be-
fore 1991. ’Ihat is, of 669 I-iehaJiors re-
quired to support the work done in 1991,
446 (67 percent) were already in the be-
habior inventory.

The number of reused application
components in ljusiness system is typi-
cally very small. When reuse occurs, it i s of
minor or technical components (date-
handling routines, coninion I/O routines).
Our findings are significant because of the

13ecausc of the ru le that places a child
below id1 its parents, Ion-level or hasic be-
haviors drift toward the bottom of the
chart llnd high-level or application behav-
iors drift to the top. This corresponds to the
system’s internal layering of the “hows,”
progressing from how the business i s to be
done, down to how to do business with the
current technical artifacts.

’l’he node a t the lower left corner is
basicNew, the inherited behavior that
handles the raw mechanics of object cre-
ation. This behavior is highly reused sim-
ply because die technicalities of memory

Process loyer - 5%

Business oblect loyer - 6.5 %

nianapnent can be reused. Much more
interesting are the left-leaning lines at
every level in the diagram, indicating
reuse even of high-level application he-
hav-iors. Furthermore, while there are
fewer left-leaning lines at the top of the
diagram, each reused component at the
upper levels of the diagram represents a
very large unit of reuse.

The extent of reuse across the system is
even greater than this figure indicates, be-
cause it shows only one of many roots in
the application. Asearch from an account-
ing behavior that appears in the upper
third of this diagram showed that the be-
havior can be reached from 164 roots.

’I‘his pattern of h i into and fan out
horn hghly reused behaviors repeats a t all
abstraction levels. Labels in the figure
show h s by indicating four general a t e -
gories of behavior:

+ specific business application (create
a gas hill),

+ generic business behaviors (apply a
ledger entry),

+ useful high-level techcal behaviors
(behaviors of collection classes and so on),
and

+ basic technical behaviors (like
basicNew and other memory-manage-
inent objects).

In a system with properly modeled ge-

7 3

neric business functions and robust sup-
port for object-oriented mechanics, you
can develop and add specific applications
rapidly.

Lines of code by byer. Figure 4 shows an
analysis of lines of code by architecture

in a purely object-ori-
ented fashon, represent
more than half of the
total. In the business-ob-
ject layer, the largest ob-
ject contains no more
than six percent of the
total code, showing that
the application
functionality is well dis-
tributed across the object
set. -.

essential requirement for business systems
is orderly evolution over time, with mini-
mal constraints on the design trajectory.

If the system models the real environ-
ment, and the technical artifacts it needs
are well insulated from each other,
changes to the system are likely to exhibit

DEVELOPERS
SHOULDN‘T
TRY TO
SPECIFY THE
SYSTEM MORE
THAN A FEW
STEPS INTO ITS
LIFE CYCLE.

”
easy to ask for will be easy
to do.

For CRIS-11, we ex-
tended an entity-relation-
attribute dictionary to in-
clude design items for an
object-oriented system
and then developed tools
that operated on the data.
We thmk a better tech-
nique is to use the object
svstem itself to contain its

‘l‘he process layer
comprises five percent of
the total, which shows
that the architecture lets the application
economically state “what” is to be done,
based on the inventory of behavior in the
business-object layer.

The hybrid interface layer is bulky, yet
the average size of a component in this
layer is still only 100 lines. T h s layer has
more than 1,000 components. The inter-
face layer was builtusing integrated CASE
tools, whch tend to generate duplicate
code in each component. The layer would
be much smaller if these components were
objects that could reuse code through in-
heritance.

RIS-11 is an example of a commercial C data-processing system that is critical
to the economic viability of the enterprise
it supports.

Systems like CRIS-I1 are better
thought of as small economies, rather than
large computer programs. As they are
used and evolve, their trajectory through a
design space is the product of their own
history and incidents in their environ-
ment. Such systems are so large they actu-
ally alter their environment.

System developers must recognize that
specifylng more than a few steps ahead in
this trajectory is simply impossible. The

own development, de-
sign, and analysis descrip-
tion. O u r experience

shows enormous benefit from having fully

bootstrapped environments. In CRIS-II.
it would have been better simply to extend
the object to fully maintain its own
metadescription.

In CRIS-11, the class description and
inheritance and messaging mechanism:
are constructed w i h the object system
they describe. However, the mechanism:
are outside the extended PL/I language
definition that allows methods to be codec
and messages to be sent.

This separation seems very generallq
applicable. If object-oriented extension:
are desirable in existing languages, devel-
opers should consider constructing theE
using a language-neutral base for describ-
ing the class structure and messaging
mechanism. They should limit languagc
extensions to bindings to the class descrip-
tions, method implementation, and be-
havior invocation. The work on thc
CLOS (Common Lisp Object System
metaobject protocol4 shows how thi!
might be done, as does the System Objec
Model in IBM’s OS12 Version 2.0.5 4

REFERENCES
1. P. Werner, “Dimensions ofObiect-Based Language Design.”Si@h Notices, Nov. 1986, pp. 168-169.
2. A Goidberg and D. Robson, Smalltalk-80: Th;L&zuge andIts?mplementatima, Addison-Wesley, Reading,

3. B. Cox, OIject-on‘ented Programming -An Evohtimly Appach, Addison-Wesley, Reading, iMass., 1986.
4. G. Kiczales, J . des Rivi&res, and D. Bobrow, The Al to f the Metaobject Protocol, ,MlT Press, Cambridge,

5. OV2 TecbnualLibraly System ObJectModel a i d e and Refrace, Document SlOG6309, IBM Corp.,

Mass., 1983.

Mass., 1991.

h o n k , N.Y, 1991.

John Davis is a parmer in
the Advanced Systems
Group of the New York Of-
fice of Andersen Consulting.
He is interested in the devel-
opment of tools and architec-
tures for modern business
systems.

from the Universitv of Mich-
Davis received an MBA

igan in quantitative methods and statistics.

Tom Morgan is manager ol
information technology de-
velopment at the Brooklyn
Union Gas Company.

Morgan received a BS ir
mathematics from the Uni-
versity of Washington. He is
a member of the IEEE and
L4CM.

Address questions about this article to John Davis, Andersen Consulting, 14th Floor, 1345 Ave. of the Ameri-
cas, New York NY 10105; or to Tom Morgan, Brooklyn Union Gas Co., 13th Floor, 1 MeuoTech Center, Brook-
lyn, NY 11201; Internet 74155.416@compuserve.com.

74 J A N U A R Y 1 9 9 3

- .-

mailto:74155.416@compuserve.com

