; INFORMATION PROCESSING 71 — NORTH-HOLLAND PUBLISHING COMPANY (1972)

INFORMATION DISTRIBUTION ASPECTS OF DESIGN METHODOLOGY *

D.L. PARNAS
Computer Science Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania, USA

The role of documentation in the design and implementation of complex systems is explored, resulting in sugges-
tions in sharp contrast with current practice, The concept of system structure is studied by examining the meaning of
the phrase “‘connections between modules™, It is shown that several system design goals (each suggesting a partial
time ordering of the decisions) may be inconsistent, Some properties of programmers are discussed. System documen-
tation which makes all information accessible to anyone working on the project, is discussed, The thesis that such in-
formation “‘broadcasting” is harmful, that it is helpful if most system information can be hidden from most program-
mers, is supported by use of the above mentioned considerations as well as by examples.

|, INTRODUCTION

Papers on design methodology assume (1) that
the methods used in system design strongly affect
the quality of the final product; and (2) by selecting
un appropriate methodology we can avoid many of
the problems previously encountered in constructing
large systems.

Under the heading ‘“‘Design Methodology” a num-

ber of separate topics can be distinguished:

1. The order in which design decisions are made
[1,2,3,6].

2. The characteristics of the final product (e.g.,
what constitutes “‘good structure” for a system)
[4,5,6,7].

3. Methods of detecting errors in design decisions
shortly after they are made [1, 2,3, 5, 8,9].

4, Specification techniques [12, 13].

5. Tools for system designers |1, 2, 3, 10, 11].
This paper emphasizes another topic named “in-
formation distribution”, Design and development are
a series of decisions. Each decision results in informa-

tion about the system which can be used in making
later decisions. We eventually want to discuss the dis-
tribution of that information among those working
on the system and to deal with its organization in
documentation. To prepare for this discussion we
deal first with (1) the concept of system structure,
(2) constraints on the order of decisions, and (3)
some observed characteristics of good programmers.

* This work was supported by the Advanced Research Pro-
jects Agency of the Office of the Secretary of Defense
(F44610-70-C-0107) and is monitored by the Air Force
Office of Scientific Rescarch.

2. STRUCTURE DEFINED

The word “‘structure” is used to refer to a partial
description of a system, A structure description shows
the system divided into a set of modules, gives some
characteristics of each module, and specifies some
connections between the modules. Any given system
admits many such descriptions. Since structure de-
scriptions are not unique, our usage of “module”
does not allow a precise definition parallel to that of
“subroutine” in software or “card” in hardware. The
definitions of those words delineate a class of object,
but not the definition of ““module”. Nevertheless,
“module” is useful in the same manner that “unit”
is in military or economic discussions. We shall con-
tinue to use “module” without a precise defintion.

It refers to portions of a system indicated in a de-
scription of that system. Its precise definition is not
only system dependent but also dependent upon the
particular description under discussion,

The term “connection” is usually accepted more
readily. Many assume that the “connections’ are
control transfer points, passed parameters, and shared
data for software, wires or other physical connections
for hardware. Such a definition of ‘“‘connection” is a
highly dangerous oversiniplification which results in
misleading structure descriptions. The connections
between modules are the assumptions which the
modules make about each other. In most systems
we find that these connections are much more exten-
sive than the calling sequences and control block
formats usually shown in system structure descrip-
tions.

The meaning of the above remark can be ex-

340 D.L.Parnas, Information distribution aspects of design

hibited by considering two situations in which the
structure of a system is terribly important: (1) making
of changes in a system and (2) proving system correct-
ness. (I feel no need to argue the necessity of proving
programs correct, or to support the necessity of mak-
ing changes. I wish to use those hypothetical situa-
tions to exhibit the meaning of *““connection”.)

Correctness proofs for programs can become so
complex that their own correctness is in question
(e.g., [14], [15]). For large systems we must make
use of the structure of the programs in producing the
proofs, We must examine the programs comprising
each module separately. For each module we will
identify (1) the system properties that it is ex-
pected to guarantee, and (2) the properties which it
expects of other modules. The correctness proof
for each module will take (1) as the set of theorems
to be proven and (2) as a set of axioms which may
be used in proving that the programs do indeed
guarantee the proofs of the theorems proven about
each module will be used in proving the correctness
of the whole system. The statements (1) and (2) con-
stitute the connections between the various modules
of the system. The task of proving systein correctness
will be facilitated by this process if the amount of in-
formation in the statement sets (1) and (2) is signifi-
cantly less than the information in the complete de-
scription of the programs which implement the con-
nected module.

We now consider making a change in the com-
pleted system. We ask, “What changes can be made
to one module without involving change to other
modules?”” We may make only those changes which
do not violate the assumptions made by other mod-
ules about the module being changed. In other words,
a single module may be changed only while the “con-
nections” still “fit”, Here, too, we have a strong ar-
gument for making the connections contain as little
information as possible.

3. FACTORS INFLUENCING THE ORDER
OF DECISION MAKING

Progress in a design is marked by decisions which
eliminate some possibilities for system structure. The
fact that those possibilities have been eliminated can
be apart of the rationale for subsequent decisions. If
the information is used, the order of decision making

(in time) affects the structure of the resulting product.

Examples of interest can be found in {4]. We can

Software

identify three considerations, each suggesting a partial
ordering on the decisions.

3.1. Obtaining ‘good’ external characteristics

All systems have characteristics which are not
pleasing to the users. Usually they were not deter-
mined by explicit deliberations; they were the un-
noticed implications of decisions about other aspects
of system structure, To consistently avoid such errors
we can make the decisions about external character-
istics first and use the resulting information to make
the later decisions. The internal decisions would be
cither derived from or checked against the complete
specifications of the external factors. This is the
basis of the “top down” or “outside in” approach dis-
cussed in {1, 2, 3, 4].

3.2. Reducing the time interval between initiation
and completion of the project

Competitive pressures may require the use of
large groups to produce a system in a sharply limited
period of time. Additional men speed up a project
significantly only affer the project has been divided
into sub-projects in such a way that separate groups
can work with little interaction (i.c., spending signi-
ficantly less time in inter-group decisions than in
intra-group decisions). This consideration atfects
the order of decisions in that it encourages very early
splitting of the system into modules which are then
designed completely independently. The desire to
make the split carly and “get on with it” encourages
a splitting along familiar lines and in agreement with
existing personnel classifications,

Time pressures encourage groups to make the split
before the external are defined. Consequently we find
some adverse effect on the useability of the product.
Haste also makes poor internal structure likely.

3.3. Obtaining an easily changed system

Systems are changed after construction either
because their original characteristics proved insuf-
ficient or because another application was found.
We have already noted that the difficulties in chang-
ing systems are related to the assumptions which
each of the modules makes about it environment.
Since each decision is usually made on the assump-
tion that the previous decisions will hold, the most
difficult decisions to change are usually the earliest.
The last piece of code inserted may be changed
easily, but a piece of code inserted several months
earlier may have “wormed” itself into the program

System Design

and become difficult to extract. These considera-
tions suggest that the early decisions should be those
which are the least likely to change; i.e., those based
on “universal” truths or reasoning which takes into
account little about a particular environment. The
remaining facts must be used eventually, but the
possibility of change suggests using the most general
information first.

Since such external characteristics as job control
language and file commands are very frequently
changed, the “‘outside-in” approach may make the
system harder to change. Further, those decision
which should be made early on this basis are not
usually those which allow the project to be quickly
subdivided into independent assignments. As a rule,
decisions which do not use all the available informa-
tion about a system (i.e., the general decisions) take
more time.

In summary, each of the three considerations sug-
gests a partial ordering of the decisions. Those order-
ings are usually inconsistent in that it will be impos-

" sible to satisfy them simultaneously.

4. DOCUMENTATION SYSTEMS

For any complex system there must be document-
ation about the system for use by the human beings
who must complete it. Programs and wiring diagrams
do completely define the algorithm which they will
execute, but this form of documentation is not usual-
ly appropriate for use by people. Consequently there
are always papers which attempt to answer the ques-
tions most likely to be asked. There is usually no at-
tempt to make the documentation complete (i.e.,
equivalent to the code for software), thus certain
questions must be answered by reference to the code.

When a system is strongly connected, this documen-
tation must be read by persons not closely involved
with the module being documented. Because each
working group develops a unique module organiza-
tion and a corresponding set of concepts and terms,
the documents which they write are difficult for
outsiders to read.

The natural response is to require all documenta-
tion to be written with a standard organization and
vocabulary [16]. A standard is made company-wide
" to allow anyone in the organization to find some
piece of information without needing to learn the
concepts and vocabulary pecuilar to one system or
module.

D.L.Parnas, Information distribution aspects of design 341

Such approaches raise several questions:

1. It is really desirable to have all information
equally accessible to all in the company (or
project)?

2. What is the effect of documentation standards
on the resulting system?

3. What is the result of a non-standard system
being described using a standard document
organization?

Documentation standards tend to force system
structure into a standard mold. A standard for docu-
ment organization and vocabulary makes some as-
sumptions about the structure of the system to be
described. If those assumptions are violated, the docu-
ment organization fits poorly and the vocabulary must
be stretched or misused. Consider the following ex-
ample. In most operating systems there exists a mod-
ule which handles all job control statements from the
time they are read in until the job is completed. As
a result, most documentation systems can insist that
there be a section describing such a module. Now
consider an organization (such as that of the T.H.E.
system [18]) in which there is no such module be-
cause most of the processing is handled in modules
which are also used for other purposes. If we adhere
to the documentation standard we will duplicate in-
formation and describe one module in the documen-
tation of another.

If there are to be standard documentation organi-
zations, they must be designed to make the minimum
number of assumptions about the system being docu-
mented. If so, they will be of little help in making
the document readable to people who do not un-
derstand the structure of the system.

5. ON SOME PROPERTIES OF GOOD
PROGRAMMERS

The following observation is essential to the re-
mainder of this paper:

“A good programmer makes use of the usable in-

formation given him!”

The good programmer will try to use his machine
well. He is actually programming for a “‘virtual ma-
chine” defined by the hardware and his knowledge
of the other software on the machine. His straining
and his nature lead him to make full use of that ex-
tended machine.

Sometimes the uses are obvious. The programmer
makes use of a subroutine from some other module,

342 D.L.Parnas, Information distribution aspects of design

or a table of constants already present for some other
piece of code. Sometimes these uses are so marginal as
to be laughable, e.g., the use of a 3-instruction sub-
routine or the borrowing of a single constant. In the
terms of our previous discussions, such extreme cases
increase the connectivity of the structure without ap-
preciably improving its performance.

Sometimes the uses are less obvious. For example,
a programmer may make use of his knowledge that
a list is searched in a certain order to eliminate a
check or an extra queue. In the area of application
programming we may find a programmer who in-
troduces an erroneous value for 7 knowing that be-
cause of an error in the sine routine the erroneous
value will cause his program to converge more rap-
idly.

Such uses of information have been so costly
that we observe a strange reaction. The industry
has started to encourage bad programming. Derog-
atory names such as “kludger”; “hacker” and “bit
twiddler” are used for the sort of fellow who writes
terribly clever programs which cause trouble later
on. Such programmers are subtly but effectively dis-
couraged by being assigned to work on small inde-
pendent projects such as application routines (the
Siberia of the software world) or hardware diag-
nostic routines (the coal mines). In both situations
the programmer has little opportunity to make use
of information about other modules,

Those that remain (the non-bit-twiddlers) are usual-
ly poor programmers. While a few refrain from using
information because they know it will cause trouble,
most refrain because they do not notice that the in-
formation can be used. Such people also miss opportu-
nities to use facts which should be used. Poor programs
result. Since even a poor programmer sometimes has a
“flash of brilliance” (e.g., noticing that two bytes in
a control block can be simultaneously set with one
instruction because they are adjacent and in the same
word) we still have no control of the structure.

We have found that a programmer can disastrously
increase the connectivity of the system structure by
using information he possesses about other modules.
We wish to have the structure of the system deter-
mined by the designers explicitly before programming
begins, rather than inadvertently by a programmer’s -
use of information. Consequently, we discourage the
bit twiddlers and pay a price in poor programming
without obtaining complete control of the structure.

Software

6. THE USE OF DESIGNER CONTROLLED
INFORMATION DISTRIBUTION

We can avoid many of the problems discussed here
by rejecting the notion that design information should
be accessible to everyone. Instead we should allow
the designers, those who specify the structure, to con-
trol the distribution ‘of design information as it is de-
veloped.

Our concerns about the inconsistent decision order-
ings were based on the assumption that information
would be used shortly after the corresponding deci-
sion. The restrictions placed by the three considera-
tions are considerably relaxed if we have the pos-
sibility of hiding some decisions from each group.

For example, we have noted a conflict between the
desire to produce an external specification early and
the desire to produce a system for which the external
interface is easily changed. We can avoid that con-
flict by designing the external interface, using itasa
check on the remaining work, but hiding the details
that we think likely to change from those who should
not use them.

If we want the structure to be determined by the
designers, they must be able to control it by con-
trolling the distribution of the information. We should
not expect a programmer to decide not to use a piece
of information, rather he should not possess informa-
tion that he should not use. The decision is part of
the design, not the programming.

Reflection will show that such a policy expects
a great deal from the designers. We currently release
all the information about a module; to do so is con-
siderably easier than (1) deciding which informa-
tion should be released and (2) finding a way of ex-
pressing precisely the information needed by other
modules. Preliminary experience has shown that
making appropriate definitions is quite difficult.
Acquiring skill in making those definitions is vital
because we will be able to successfully build sys-
tems while restricting programmers’ information only
if we learn to provide them with precisely the informa.
tion they need.

7. EXAMPLES

I believe it worthwhile to give some concrete ex-
amples of information which is now widely dissemin-
ated within a project and should instead be sharply re.
stricted.

System Design

7.1. Control block formats

Every system contains small amounts of informa-
tion in pre-formatted areas of storage called con-
trol blocks, These are used for passing information
between modules and are considered to be the in-
terfaces. For this reason formats are usually speci-
fied carly in the project and distributed to all who
are working on the project, The formats are changed
many times during the project. Few programmers on
any project need to know such formats, They need
a means for referring to a specific item, but not more.
They need not even know which information is
grouped into one control block.

7.2. Memory maps

It is common to begin a description of an operat-
ing system by (1) describing the main modules and
(2) showing how the core storage is divided among
those main modules. Soon there is a complete map
of the memory showing how that resource is al-
located. Reasonably sophisticated designers show
the borders of allocated areas as symbolic rather
than absolute addresses, but the order of inemory as-
signment is specified. Only a sinall portion of this in-
formation derives from hardware decisions. There is
no legitimate way (o use the map information, It
would be frightening if someone developed code that
would not work if the map were changed. Such maps
are almost invariably changed because something
which was fixed becomes variable or vice versa. The
information is only needed at assembly time. We could

survive if it were input to the asseinbler and not known

by anyone clse.

Where there is a virtual memory or other mecha-
nism for swapping built into the.system, the distine-
tion between resident and non-resident items should
not be broadcast. If there are several kinds of core
storage, the allocation of modules and data among
those storage types should not be known to those
who are writting the modules. If partial preloading
of certain programs is envisaged, the decision as to
which modules will be preloaded should be hidden.
Each of these decision is worthy of attention, but
few should known the result.

7.3. Calling sequences

Calling sequences are the secret hobby of every
system programmmer. We begin to look at new hard-
ware by inventing a calling sequence. Threughout
the design and implementation, the calling sequence
is simplified, generalized, made more effcient, etc.
Each time we face a decision. Either modules all over

D.1..Parnas, Information distribution aspects of design

343

the system are altered or the new sequence is added
to a growing sct of calling sequences. In the latter
case generating a call 1o a routine requires deter-
mining which sequence it uses.

Most routines can be written, and written well
without knowledge of the calling sequence if the
programmer is provided with a programming tool
which allows him to postpone decisions about re-
gister allocation for parameters, return addresses,
and results. Such features can provided in an as-
sembler with macro facilities,

7.4 JCL formats

One characteristic which should be casy to change
is the syntax of the so called Job Control Language,
the eans by which the user describes his job's gross
characteristics to the operating system, The design of
a JCL implics assumptions about the way that the
system will be used which may later prove to be false
or too restrictive. There exist systems in which JCL
format information has been used so much that rea-
sonable changes require user provision of duplicate
information and/or the maintenance of duplicate
tables. (See, for example, |17} .)

Most of the people working on an operating sys-
tem need very little knowledge about the JCL. The
only people who need to know the format are those
who are writing the syntux analyzer for the language.

7.5. Location of 1/Q device addresses

It is widely recognized that device addresses should
not be built into code but stored in tables associated
with cach job. However, it is usual that all program-
mers are given knowledge sufficient to allow them
to find and usc the table. For example, many mod-
ules will send messages to a user at his teletype. If
later one wishes to intersect those messages and re-
interpret or suppress them for a special class of users,
the job is horrendous. Most programs did not need
that information. Access to a module which would
send messages for them is sufficient.

7.6. Character codes

Some hardware information should not be re-
leased. 1 have scen one compiler in which the as-
sociation made by the hardware between card
characters and integers was so widely used that a
second version of the compiler (for @ new machine)
contained a module which translated from the new
character code to the old one and back again.

The efficiency gained by using the character code
information (e.g., by using arithmetic test to deter-

344

mine if a given character is a delimeter) is often not
worth the price paid. Where it is worthwhile, the
knowledge can be closely restricted if the designers
pay attention to the problem. Certainly the decision
to use or not use the information should not be left
up to an individual programmer,

8. CONCLUSION

The inescapable conclusion is that manufactures
who wish to produce software in which the structure
is under the control of the designers, must develop a
documentation system which enables designer con-
trol of the distribution of information. Further, they
must find and/or train designers who are able to de-
fine or specify modules in a way which provides ex-
actly the information that they want the program-
mers to use. Until we can completely staff a project
with men who have the intellectual capacity and
training to make that decision for themselves, some
must make the decision for others. An asseinbler
which allows the insertion of some hidden informa-
tion at *“assembly time” will aid in maintaining ef-
ficiency.

[consider the internal restriction of information
within development groups to be of far more im-
portance than its restriction from users or competi-
tors. Much of the information in a system document
would only harm a competitor if he had it. (He might
use it!)

It is worth repeating that the decision about which
information to restrict is a design decision, not a ma-
nagement one. The management responsibility ends
with providing the appropriate information distribu-
tion mechanism. The use of that mechanism remains
a design function because it determines the structure
of the product.

ACKNOWLEDGEMENT

1 am grateful to A. Perlis, H. Wactlar and C.G. Bell
for their suggestions after an early reading of this
paper. I am deeply grateful to NV Philips-Electrologica,
Apeldoorn, the Netherlands, for having provided me
with the opportunity to study the problems of sys-
tems development by means of a direct involvment.
Although the problems discussed in this paper are

D.L.Parnas, Information distribution aspects of design

Software

shared by everyone in the industry, the steps taken
at Philips to improve the situation have provided me
with valuable insight. Thanks are due to countless
personnel, both at Philips and at several other institu-
tions, who have been patient during my probing.

REFERENCES

{1] D.L. Parnas and J.A. Darringer, SODAS and a method-
ology for system design, Proc. AVIPS FICC (1967)
449-474,

[2) F.W. Zurcher and B, Randell, Multilevel modeling - a2 meth-
odology for computer system design, Proc. IFIP Confer-
ence (1968). :

13) D.L. Parnas, More on simulation languages and design
methodology for computer systems, Proe. SICC (1969)
739-743,

{4] E.W. Dijkstra, Notes on structured programming, pub-
lication of the Tethnical University of Eindhoven, Neder-
lands.

15) E.W. Dijkstra, Complexity controlled by hicrarchical
ordering of function and variability, in: Software Engi-
neering, Proc, of a meeting at Garmisch, Germany, Oct.
1968.

161 S. Gill, Thoughts on the sequence of writting software,
in: Software Engincering, Proc. of a meeting at Garmisch,
Germany, Oct. 1968.

[7] E.W. Dijkstra, Structured programming, in: Software
Engincering Techniques, Proc. of mecting in Rome, Oct.
1969,

18] 12.W. Dijkstra, A constructive approach to the problem
of prograimn correctness, BIT 8, vol. 3 (1968).

{91 P. Naur, Proof of alogarithms by general snapshot, BIT
6 (1966).

[10] Wulf et al., BLISS Users Manual, publication of Carnegie-
Mellon U., Pittsburgh, Pa.

j11] V.M. Waite, The mobile programming system: STAGE
2, CACM 13, 7 (July 1970)411-421,

112} D.L. Pamnas, On the usc of transition diagrams in the
design of a user interface for an interactive computer
system, Proc. 1969 Nat'l. ACM Conference, 379-386.

{13} P.Ii. Hartman and D.H. Owens, How to write software
specifications, Proc. I'ICC (1967) 779-790.

{14] R.M. Balzer, Studies concerning minimal time solutions
to the firing squad synchronization problem, Ph. D.
thesis, Carnegic Institute of Technology (1966).

[15]) R. London, Certification of treesort 3, CACM, June
1970.

116] . Selig, Documentation standards. in: Software Engi-
neering, Proc. of meeting Garmisch, Germany, Oct,

1968.

{17] Braden, et al., An Implementation of MVT, publica-
tion of the University of Calif., L.A.

[18) E.W. Dijkstra, Structure of the T.HLE. multiprogram-
ming system, CACM, May 1967.

